domingo, 28 de abril de 2013

Aleaciones del aluminio


     El aluminio puro es un material blando y poco resistente a la tracción. Para mejorar estas propiedades mecánicas se alea con otros elementos, principalmente magnesio, manganeso, cobre, zinc y silicio, a veces se añade también titanio y cromo. Actualmente las aleaciones de aluminio se clasifican en series, desde la 1000 a la 8000, según el siguiente cuadro.

Serie
Designación
Aleante principal
Principales compuestos
en la aleación
Serie 1000
1XXX
99% al menos de aluminio
-
Serie 2000
2XXX
Cobre (Cu)
Al2Cu - Al2CuMg
Serie 3000
3XXX
Manganeso (Mn)
Al6Mn
Serie 4000
4XXX
Silicio (Si)
-
Serie 5000
5XXX
Magnesio (Mg)
Al3Mg2
Serie 6000
6XXX
Magnesio (Mg) y Silicio (Si)
Mg2Si
Serie 7000
7XXX
Zinc (Zn)
MgZn2
Serie 8000
8XXX
Otros elementos
-

Las series 2000, 6000 y 7000 son tratadas térmicamente para mejorar sus propiedades. El nivel de tratamiento se denota mediante la letra T seguida de varias cifras, de las cuales la primera define la naturaleza del tratamiento. Así T3 es una solución tratada térmicamente y trabajada en frío.
  • Serie 1000: realmente no se trata de aleaciones sino de aluminio con presencia de impurezas de hierro o aluminio, o también pequeñas cantidades de cobre, que se utiliza para laminación en frío.
  • Serie 2000: el principal aleante de esta serie es el cobre, como el duraluminio. Con un tratamiento T6 adquieren una resistencia a la tracción de 442 MPa, que lo hace apto para su uso en estructuras de aviones.
  • Serie 3000: el principal aleante es el manganeso, que refuerza el aluminio y le da una resistencia a la tracción de 110 MPa. Se utiliza para fabricar componentes con un buen comportamiento frente al mecanizado.
  • Serie 4000: el principal aleante es el silicio.
  • Serie 5000: el principal aleante es el magnesio que alcanza una resistencia de 193 MPa después del recocido.
  • Serie 6000: se utilizan el silicio y el magnesio. Con un tratamiento T6 alcanza una resistencia de 290 MPa, apta para perfiles y estructuras.
  • Serie 7000: el principal aleante es el zinc. Sometido a un tratamiento T6 adquiere una resistencia de 504 MPa, apto para la fabricación de aviones.

SOLDADURA
Hay dos técnicas de soldadura al arco de un lado la soldadura al arco bajo atmósfera inerte con electrodo refractario o procedimiento TIG y de otro lado la soldadura al arco bajo atmósfera inerte con electrodo consumible o procedimiento MIG.
La soldadura TIG (Tungsten Inert Gas), se caracteriza por el empleo de un electrodo permanente de tungsteno con empleo de corriente alterna y alta frecuencia.Dada la elevada resistencia a la temperatura del tungsteno (funde a 3.410 °C), acompañada de la protección del gas, la punta del electrodo no se afila y se pone la punta redonda. Los gases más utilizados para la protección del arco en esta soldadura son el argón y el helio, o mezclas de ambos. Una varilla de aportación alimenta el baño de fusión y debe ser de la misma característica o de superior calidad. Esta técnica es muy utilizada para la soldadura de aleaciones de aluminio y se utiliza en espesores comprendidos entre 1 y 6 mm y se puede robotizar el proceso.
  • En el momento de ejecutar una soldadura la limpieza de las piezas es esencial. La suciedad, aceites, restos de grasas, humedad y óxidos deben ser eliminados previamente, bien sea por medios mecánicos o químicos.
  • El gas inerte que más se utiliza en la soldadura normal en los talleres es el argón puro, puesto que es mucho más económico y requiere menor flujo de gas. El helio se usa sólo cuando se exige mayor penetración.
  • Para mantener libre de humos y gases la zona de soldadura, es aconsejable la instalación de extractores de humos y gases. La intensidad del arco es mucho mayor que en la soldadura de acero y bajo ningún concepto se debe mirar al arco sin una máscara de protección adecuada.


jueves, 25 de abril de 2013

Como hacer una plancha de asar


Soldabilidad de los metales


La soldabilidad es la aptitud o mayor o menor dificultad que tiene un metal o aleación para formar uniones soldadas con unas propiedades tecnológicas de calidad. Podemos distinguir dos grupos:

Metales ferrosos:
          Aceros al carbono. Se sueldan fácilmente cuanto menor porcentaje de carbono haya; la formación de martensita es un riesgo en los aceros con alto contenido en carbono. La martensita no sólo es dura y frágil, sino que su formación procede con un incremento de volumen que impone esfuerzos adicionales en la estructura. El precalentamiento y, si es posible, el postcalentamiento son necesarios cuando la formación de martensita o bainita son inevitables.
Aceros inoxidables. Siempre contienen cromo, que forma una película extremadamente densa de Cr2O3. Se debe evitar su formación. Los aceros austeníticos (que contienen Cr y Ni) son también soldables, aunque los carburos de cromo formados reducen el nivel de cromo total en el acero y éste queda sin protección contra la corrosión. Para evitar esto, el contenido de carbono debe ser muy bajo.
Hierro fundido. La soldabilidad de los hierros fundidos varía en gran  medida, pero muchos de ellos se sueldan, especialmente mediante soldadura por arco. Frecuentemente se emplea un metal de aporte al alto níquel para estabilizar el grafito. El precalentamiento y el enfriamiento lento también son útiles.

 Metales no ferrosos:
    Metales de bajo punto de fusión. El estaño y el plomo se sueldan fácilmente, a condición de que la entrada de calor se mantenga suficientemente baja para evitar el sobrecalentamiento. El zinc es uno de los materiales más difíciles de soldar, porque se oxida fácilmente y también se vaporiza a baja temperatura (906 ºC).
Aluminio y magnesio. La mayoría de sus aleaciones se sueldan fácilmente, particularmente con una envolvente de gas inerte. De otra manera, la película de óxido debe ser removida con un fundente poderoso, que a su vez puede requerir eliminarse después de la soldadura para evitar la corrosión. La humedad (H2O) se debe evitar, ya que reacciona y produce un óxido que vuelve frágil la unión al causar porosidad.
La alta conductividad térmica y el elevado calor específico, aunque con un bajo punto de fusión de estas aleaciones, requieren de una entrada de calor y de precauciones adecuadas contra el sobrecalentamiento. Debido a las dificultades encontradas con los materiales endurecidos por precipitación, las aleaciones a menudo son tratadas térmicamente después de la soldadura o, si esto no es posible, se utiliza un material de aporte diferente (con frecuencia Al-Si para aleaciones de aluminio).
Aleaciones con base de cobre. El cobre desoxidado se suelda de manera sencilla, especialmente si el material de aporte contiene fósforo para proporcionar una desoxidación instantánea. Los latones se pueden soldar pero las pérdidas de zinc son inevitables; por lo tanto, o el metal de aporte se enriquece en zinc, o se agrega Al o Si para formar un óxido que reduzca la evaporación. Los bronces de aluminio no representan problema, aunque el óxido formado se debe desalojar, igual que con el aluminio puro.
Níquel. Este metal y sus aleaciones de solución sólida se sueldan fácilmente. Todas las aleaciones de níquel son muy sensibles incluso a la cantidad más pequeña de azufre, que forma un eutéctico de bajo punto de fusión y provoca agrietamiento por calor.
Titanio y zirconio. Las aleaciones también son soldables, pero una atmósfera inerte es esencial para evitar la oxidación; por lo tanto, a menudo se encierran en cámaras de soldadura de atmósfera inerte o se sueldan con un haz de electrones. En la soldadura del titanio el principal defecto suele ser, como en el aluminio, la presencia de porosidad debida a los gases que se forman durante la soldadura, sobre todo hidrógeno.

miércoles, 24 de abril de 2013

lunes, 15 de abril de 2013

SOLDADURA Y LIMPIEZA DE LOS ACEROS INOXIDADLES

       El acero inoxidable es un material de elección para las industrias alimenticias, farmacéuticas y biotecnológicas, especialmente para las superficies en contacto con los productos o para cerrajería, barandillas, tuberías etc. Sin embargo, para lograr todas las ventajas de sus excelentes propiedades, la superficie debe estar libre de depósitos contaminantes y materiales extraños, que se pueden eliminar reconociendo sus fuentes y realizando buenos procedimientos de limpieza.
     Durante la soldadura de aceros inoxidables se presentan cambios en la estructura del metal, por ejemplo, la temperatura del metal base adyacente a la soldadura, alcanza niveles en los que pueden ocurrir una transformación de la estructura. El grado de estos cambios afecta las propiedades mecánicas y de resistencia a la corrosión, dependiendo de los siguientes factores: espesores, material de aporte, diseño de la unión, proceso de soldadura y habilidad del soldador.
       El principal objetivo en la soldadura de aceros inoxidables será asegurar que las características de la soldadura serán iguales o mejores que las del metal base.
En la soldadura se definen tres zonas, que definiremos como:
1. La zona del cordón de soldadura solidificado, que se compone de metal base o metal base y material de aporte.
2. La zona afectada por el calor (ZAC), al soldar el metal en la zona adyacente al cordón de soldadura se calienta a temperaturas elevadas, menores a el punto de fusión.
3. El metal base

En la figura, se muestran las zonas definidas anteriormente, este artículo tiene el objetivo de señalar las consideraciones y procesos para la adecuada soldadura de los aceros inoxidables.


La soldadura de los aceros inoxidables austeníticos
En general, los aceros inoxidables austeníticos son los que presentan mejor soldabilidad ya que durante el proceso de calentamiento y enfriamiento debido a su soldadura no tiene un cambio de fase. 
     La disminución de la resistencia a la corrosión puede surgir  con la soldadura,entre los 425ºC a 870ºC el cromo y carbóno se combinará y precipitarán en los bordes de grano como carburos de cromo. Esto puede dar lugar a que existan áreas donde no haya cromo suficiente para formar la capa necesaria de óxido de cromo, quedando en cierta medida vulnerable el acero inoxidable cuando es expuesto a medios corrosivos. La corrosión que aparece en estas características se llama “intergranular”.

Contaminación por hierro
   Cuando un equipo nuevo de acero inoxidable desarrolla puntos de herrumbre, casi siempre es el resultado de la contaminación por partículas de hierro. En algunos ambientes, si el hierro no se elimina, puede tener lugar un severo ataque en forma de corrosión por picado.
    En atmósferas no tan exigentes, las partículas de hierro pueden actuar como un contaminante, afectando la pureza del producto, o presentar una apariencia superficial desagradable a la vista.
    No permitir el contacto de las superficies de acero inoxidable con elementos de hierro o acero. El contacto podría provenir de herramientas de izado, mesas de acero o rack de almacenamiento,  discos abrasivos contaminados , limas cinta de sierra ,etc por citar algunas.

Salpicaduras de soldadura: La tendencia de la soldadura a producir salpicaduras varía con el proceso de soldar. Por ejemplo, la soldadura TIG está bastante libre de salpicaduras, mientras que la soldadura con electrodos tiende a producir salpicaduras si las condiciones de trabajo no son las adecuadas. Es aconsejable recubrir la zona adyacente al cordón de soldadura con una lámina autoadhesiva que luego puede ser fácilmente removida sin daño para la superficie.

Manchas de decapante de soldadura: Los procesos que utilizan un decapante, tales como la soldadura por arco, o por arco sumergido, pueden dejar pequeñas partículas de decapante que no se eliminan con una limpieza normal. Estas partículas crean sitios para la iniciación de la corrosión por rendijas. Es necesario una técnica de limpieza mecánica.

Defectos de soldadura: tales como penetración incompleta, falta de protección, porosidad y rajaduras no sólo reducen la integridad de la soldadura, sino que también actúan favoreciendo la corrosión por rendijas.

LIMPIEZA CON ACIDO NITRICO
ELIMINACION DE LA CONTAMINACION SUPERFICIAL: LIMPIEZA QUIMICA Y ELECTROQUIMICA
Las incrustaciones de hierro, las coloraciones de soldaduras, la capa reducida en cromo que se encuentra debajo de los óxidos y coloraciones de soldadura, las capas superficiales alteradas por tratamiento mecánico y de pulido, y las inclusiones de sulfuro; se pueden eliminar mediante un tratamiento ácido, disolución electroquímica como el ácido nítrico.

PRECAUCIONES
La PASTA DECAPANTE emite leves vapores ácidos. Al utilizarla deben protegerse las manos y ojos con guantes de hule, lentes de seguridad o careta facial. En caso de contacto accidental del acido con la piel, se debe lavar la zona afectada con agua en abundancia.
 TIEMPO DE REACCION
En aceros inoxidables el tiempo de reacción para la limpieza es de 15 a 50 minutos. En temperaturas mayores a 20ºC, el tiempo de reacción es más corto. Después de la aplicación, se lava la superficie con bastante agua ayudándose con un cepillo de alambre de acero inoxidable.